Automatic Detection of Search Tactic in Individual Information Seeking: A Hidden Markov Model Approach

نویسندگان

  • Shuguang Han
  • Zhen Yue
  • Daqing He
چکیده

Information seeking process is an important topic in information seeking behavior research. Both qualitative and empirical methods have been adopted in analyzing information seeking processes, with major focus on uncovering the latent search tactics behind user behaviors. Most of the existing works require defining search tactics in advance and coding data manually. Among the few works that can recognize search tactics automatically, they missed making sense of those tactics. In this paper, we proposed using an automatic technique, i.e. the Hidden Markov Model (HMM), to explicitly model the search tactics. HMM results show that the identified search tactics of individual information seeking behaviors are consistent with Marchionini’s Information seeking process model. With the advantages of showing the connections between search tactics and search actions and the transitions among search tactics, we argue that HMM is a useful tool to investigate information seeking process, or at least it provides a feasible way to analyze large scale dataset.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Detection of Search Tactics in Collaborative Exploratory Web Search Process

Information seeking process is an important research topic in information seeking behavior. Collaborative information seeking (CIS) has attracted many researchers’ attention in recent years, but the investigation of CIS process is still rare. Investigations on search processes can either be macro-level or micro-level. The macro-level investigation focuses on establishing theoretical models whil...

متن کامل

Abnormality Detection in a Landing Operation Using Hidden Markov Model

The air transport industry is seeking to manage risks in air travels. Its main objective is to detect abnormal behaviors in various flight conditions. The current methods have some limitations and are based on studying the risks and measuring the effective parameters. These parameters do not remove the dependency of a flight process on the time and human decisions. In this paper, we used an HMM...

متن کامل

Intrusion Detection Using Evolutionary Hidden Markov Model

Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training,  ...

متن کامل

Automatic Video Object Detection and Recognitionwith Camera in Motion

In this paper, we present an automatic moving object extraction and classification system. For extraction, a novel technique for automatic extraction of moving object captured by a moving camera is proposed. Optical flow handles the background modeling and camera motion estimation, and frame difference information yields the exact object shape. We also put forward region boundary based change d...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.1924  شماره 

صفحات  -

تاریخ انتشار 2013